Part 9: Mechanisms of Localization of Radiopharmaceuticals

- 1. For Tc-MAA localization in the lungs, the mechanism is based upon
 - a. Phagocytosis of the albumin particles
 - b. Chemisorption
 - c. Capillary filtration
 - d. Microembolization of capillaries using precipitated human serum albumin particles
- 2. The uptake of Tc-MDP in bone tissue is based upon
 - a. Passive diffusion and exchange with hydroxide ions
 - b. Surface adsorption of the labeled phosphate on hydroxyapatite crystals
 - c. Phagocytosis by the bone matrix
 - d. Metabolic trapping
- 3. ¹⁸F-FDG localizes in malignant tumors because
 - a. It undergoes phagocytosis in the mitochondria
 - b. It is a fatty acid analog and is readily taken up by tumors
 - c. It undergoes metabolic trapping
 - d. It is organified by a fluorination reaction
- 4. The mechanism of localization of In-111 Octreoscan in an insulinoma is called
 - a. Antigen-antibody reaction
 - b. Metabolic trapping
 - c. Chemisorption
 - d. Receptor binding
- 5. Imaging of the airways in the lungs is an example of
 - a. Chemisorption
 - b. Simple diffusion
 - c. Compartmental localization
 - d. Active transport
- 6. Imaging of tubular secretory function of the kidneys is an example of
 - a. Chemisorption
 - b. Simple diffusion
 - c. Compartmental localization
 - d. Active transport
- 7. Uptake of radioiodide by the thyroid is an example of
 - a. Chemisorption
 - b. Simple diffusion
 - c. Compartmental localization
 - d. Active transport

- 8. The transfer of Xe-133 gas across lipid membranes in the lungs into the blood stream is called
 - a. Chemisorption
 - b. Simple diffusion
 - c. Compartmental localization
 - d. Active transport
- 7. F-18 NaF may be used for bone imaging. Which of the following mechanisms describes its uptake in bone tissue?
 - a. Chemisorption
 - b. Simple diffusion
 - c. Exchange diffusion
 - d. Compartmental localization
 - e. Active transport
- 8. For visualization of prostate cancer metastases following injection of In-111 ProstaScint, the operating mechanism is
 - a. Antigen-antibody reaction
 - b. Metabolic trapping
 - c. Chemisorption
 - d. Receptor binding
 - e. Active transport
- 11. Which one of the following is NOT an example of Compartmental Localization?
- a. Pulmonary ventilation study w/ Xe-133 gas
- b. Cisternogram with In-111 DTPA
- c. Hepatobiliary study with Tc-99m Disofenin
- d. Voiding cystogram with Tc-99m SC
- 12. Which of the following represents Active Transport?
- a. Uptake and organification of radioiodide in the thyroid gland
- b. Uptake of Tc-99m MAG by the kidneys
- c. Uptake of Rb-82 ion by the heart
- d. a and c only
- e. All of the above
- 13. Which of the following represents Physicochemical Adsorption?
- a. Thrombosis imaging with Tc-99m AcuTect
- b. Spleen imaging w/ damaged labeled RBCs
- c. Bone imaging with Tc-99m labeled phosphate based bone agents
- d. a and c only
- e. All of the above

- 14. Which of the following monovalent cations is a β + emitter?
 - a. TI-201
 - b. Rb-82
 - c. K-43
 - d. None of the above
- 15. Tc-99m MAA is used to assess pulmonary perfusion. Which ONE of the following statements is FALSE?
- a. The typical injection of MAA particles causes microembolization of ~350,000 capillaries
- b. The number of particles to be administered is reduced for a patient with pulmonary hypertension
- c. Approximately 1% of all capillaries in the lungs is occluded by the typical injection
- d. The biological half-life of Tc-MAA in the lungs is approximately 8 hours